Non-linear Inverse Analysis of Transportation Structures Using Neuro-adaptive Networks with Hybrid Learning Algorithm

نویسندگان

  • Kasthurirangan Gopalakrishnan
  • Siddhartha K. Khaitan
  • Halil Ceylan
  • KASTHURIRANGAN GOPALAKRISHNAN
چکیده

The load-bearing capacity of pavement structures is a fundamental structural performance metric of transportation infrastructure networks in the context of safe and efficient movement of people and goods from one place to another. Non-destructive test (NDT) methods are typically employed to routinely evaluate the structural condition of pavement structures, their lifespan and the appropriate maintenance activities to be carried out. This involves computing the Young’s modulus of each layer of the pavement structure through inverse analysis of acquired NDT data. Over the past two decades, soft computing techniques such as Artificial Neural Networks (ANNs), Genetic Algorithms (GAs), and Fuzzy Logic Approach (FLA) have been applied in numerous civil engineering fields for pattern recognition, function approximation, etc. This paper proposes the use of an Adaptive-Network-based Fuzzy Inference System (ANFIS) combined with Finite Element Modeling (FEM) for inverse analysis of multi-layered flexible pavement structures subjected to dynamic loading. Using the proposed approach, it will be possible for pavement engineers to characterize the non-linear, stress-dependent modulus of the pavement layers based on the NDT data in real time, identify the pavement defects, and better determine the appropriate rehabilitation strategy. Reference to this paper should be made as follows: Gopalakrishnan, K., Khaitan, S. K., and Ceylan, H. (2009). “Non-linear Inverse Analysis of Transportation Structures Using Neuro-Adaptive Networks with Hybrid Learning Algorithm ,” ANNIE 2009, ANNs in Engineering, St. Louis, Missouri, November 2-4, pp. 99-106. 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling structures by inverse adaptive neuro fuzzy inference system and MR dampers

To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Backcalculation of Non-Linear Pavement Moduli Using Finite-Element Based Neuro-Genetic Hybrid Optimization

The determination of pavement layer stiffness is an essential step in evaluating the performance of existing road pavements and in conducting pavement design and analysis using mechanistic approaches. Over the years, several methodologies involving static, dynamic, and adaptive processes have been developed and proposed for obtaining in-situ pavement layer moduli from Falling Weight Deflectomet...

متن کامل

Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy

This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016